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J. Phys. A :  Math. Gen. 16 (1983) 1315-1330. Printed in Great Britain 

Collisional coupling of fluctuations in plasmas 

P Uddholm 
Department of Plasma Physics, U m e l  University, S-901 87 Umel ,  Sweden 

Received 19 August 1982 

Abstract. The transition probability function approach is extended to plasmas in which 
the fluctuations in the various particle species are coupled through the collisions. The 
collisions may be either particle conserving or particle non-conserving (chemical reactions). 
Particular attention is paid to the case of particle non-conserving collisions, because 
certain dificulties connected with the use of the fluctuation dissipation theorem then arise. 
This does not mean that the fluctuation dissipation theorem is erroneous, but only that 
the appropriate force-response pair is at best difficult to find. Such is the case for the 
density fluctuation spectrum. The transition probability function approach avoids this 
difficulty. 

1. Introduction 

Present theories of linear fluctuations in a plasma usually belong to one of two main 
categories. Thus Swartz and Farley (1979) and Seasholtz (1971) use a generalised 
version of the fluctuation dissipation theorem (further references are available in these 
works). An alternative approach, the transition probability function theory, was 
developed by e.g. Grewal (1964), Hagfors and Brockelman (1971) and Uddholm 
(1982). Here one first calculates the fluctuation spectra with the collective fields 
neglected. Following Theimer and Theimer (1973) we shall refer to these spectra as 
the random spectra. We also use the term ‘undressed spectra’, as opposed to ‘dressed 
spectra’ when collective effects are included. The collective effects are then introduced 
by means of a superposition principle. 

The fluctuation dissipation theorem is an exact thermodynamical relation which 
is valid for any system in thermal equilibrium. The transition probability approach 
is not restricted to Maxwellian velocity distribution functions but, on the other hand, 
its domain of validity is the same as that of the Boltzmann equation (1). Although 
the two theories are fundamentally different, they yield identical results when both 

The above is true for plasmas for which the particles are conserved in the collisions. 
The purpose of this paper is to extend the method of Uddholm (1982) to include the 
effects of collisional coupling of the fluctuations by means of chemical reactions (i.e. 
particle non-conserving collisions) as well as particle conserving collisions. The calcula- 
tion of actual spectra will be postponed to later papers, however. We shall see that 
the velocity spectra thus obtained always agree with those calculated by means of the 
fluctuation dissipation theorem. In the presence of chemical reactions, however, a 
struightforward application of the fluctuation dissipation theorem yields density spectra 
quite different from those obtained using the theory presented here. In fact, the 

apply. 
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1316 P Uddholm 

former are associated with non-causal response functions and are hence unphysical. 
Their validity is also to be doubted owing to more elementary considerations ( 5  7). 
It should be emphasised that we never claim that the fluctuation dissipation theorem 
is wrong; only that it has to be applied with some care. This theorem yields the correct 
velocity- and potential-fluctuation spectra, because those quantities can be directly 
associated with the work done on the plasma by (hypothetical) external forces, whereas 
the density fluctuation spectrum cannot if particle non-conserving collisions are 
assumed. In the absence of chemical reactions it is often calculated from the velocity 
fluctuation spectrum, using the continuity equation. In this paper we thus show how 
this procedure should be altered for plasmas, in which the particle non-conserving 
collisions are important, and formulate a formalism which correctly allows for such 
collisions. 

Our results will also be valid for systems where the particles are conserved in the 
collisions but, nevertheless, the fluctuations in the various particle species are coupled 
through the cross species collision operators. Examples of this are the collisional 
coupling between the ions and the electrons in a fully ionised plasma (Cheng 1973) 
and between the charged particles and the background neutral gas in a weakly ionised 
plasma (Tanenbaum 1968). These can be treated as particular cases of our theory 
and, for such plasmas, there is no conflict with any calculations based on the fluctuation 
dissipation relation. Moreover, Theimer and Sandalov (1979), Theimer er a1 (1980) 
and Theimer and Theimer (1981) have pointed out the importance of high-2 
impurity ion collisions in dense, low-temperature fusion plasmas. Depending on 
the impurity ion concentration the dominant collisional damping is due to ion-ion, 
ion-impurity or impurity-impurity collisions. To the author's knowledge, our theory 
is the first one that correctly includes the effects of the light ion-impurity collisions. 

The disposition of this paper will be as follows. In 0 2 we discuss and solve the 
linearised Boltzmann equation. In order to clarify the exposition somewhat we review 
the fluctuation dissipation theorem and the transition probability function method in 
§§ 3 and 4, respectively. In § 5 we discuss how the use of the continuity equation 
(when deriving the density fluctuation spectrum from the velocity fluctuation spectrum) 
should be altered in the presence of chemical reactions. In the absence of collective 
effects, it is easy to verify that the resulting expression agrees with the results derived 
by the transition probability function theory. In order to calculate the dressed spectra, 
that relation is quite useless, however. We conclude the section by presenting the 
dressed electron density fluctuation spectrum, where the collective effects have been 
included through the dielectric superposition principle. In 5 6 we show that the total 
intensity in the electron density fluctuation spectrum is not changed in the presence 
of chemical reactions, if the plasma is isothermal. We devote S; 7 to a short discussion 
of the results obtained in this paper and comparison with a previous work (Kockarts 
and Wisemberg 1981). The presentation has to be rather terse, due to the lengthy 
algebra. 

2. The Boltzmann equation 

We consider a plasma described by the linearised Boltzmann equation 
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where the index U denotes the particle species, C, is an ordinary particle conserving 
charged particle-neutral collision operator (e.g. a BGK or Lorentz term), nUo is the 
unperturbed particle number density, fuo is the unperturbed velocity distribution 
functiorr, normalised so that JdufUo = 1, f,l is the perturbation of the distribution 
function, mu and q, are the particle mass and charge, F, is an external fictitious force 
which only couples (directly) with particles of species U and the collision operators 
C,,' account for the effects of the collisional and chemical coupling of the linear 
fluctuations in the different species. 

We have separated out the operator C,. This is, of course, not necessary but in 
the following we shall find it convenient, since we may then let the operators Cuu, 
refer to the chemical reactions exclusively. From this point we consider only the case 
of particle non-conserving collisions, but neglect the exchange of momentum and 
energy, between the various particle species, due to particle conserving collisions. 
This is only because the former is the most difficult case to treat, but as stated 
previously, the theory below applies to both cases. Furthermore, we assume that the 
collective electric field El is longitudinal, that there are no neb particle drifts and that, 
except for the fictitious forces F,, there are no external fields applied to the plasma. 
Generalisation of the theory to include such effects presents no difficulties, however. 

In the ionospheric plasma, only the reaction n + e - e J -  is of interest ((T = E, e 
and J for neutrals, electrons and negative ions, respectively). Whether there are other 
reactions, which may be of interest in incoherent scattering experiments, for instance 
associated with ionisation waves in laboratory discharges, is not known to the author. 
We consider the general problem, however, since it does not complicate the matter 
appreciably. 

It should be noticed that equation (1) does, in fact, not describe the exact micro- 
scopic fluctuations. It contains no information as to exactly when or where each 
collision or chemical reaction occurs but only the probabilities per unit time for these 
processes to take place. Thus, given some initial values fu l ( r ,  U, t = 0), the solutions 
f , ~  are only the averages, at tirqes t > 0, of the microscopic fluctuations satisfying this 
initial value. We must therefore draw the conclusion that any properties, of the 
quantities fu l ,  nul etc, which are derived from the Boltzmann equation (1) cannot be 
transferred to the ensemble averages ( f,l fb.1 )k, (n,,n& )k etc without further 
reference. 

Let us now solve equation (1). To this end we introduce the operator matrix g-' 
with the element 

(2) 
at the position cr'u'' (S,~,~, being the Kronecker delta, S,',,, = 1 if U' =a" and S,.,., = 0 
if U'  f d') and its inverse g with the elements 

-1 g,,,', = [i(w - k U )  - C,.]S,,,p8 - C',+,~, 

Thus 

The algebra is quite straightforward so we omit the details and only present the results. 
Hence if we define the generalised susceptibilities 
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x :' = c x u'u,, 9 

E = 1 + 1 Xu,& 

U" 

the dielectric number 

U',"' 

and the generalised conductivities 

A:, = 1 A,,,,-, 
n" 

we derive from equation (1) 

for the particle number density perturbations, 
( 1 )  

Ptot F o k  Fu.x.6, 
F qu, C 

ptot=-+xi-- 

for the total charge density perturbation, 

for the a-particle flux density perturbations and 

for the total current perturbation. 

the superscript (r) denotes random quantities, i.e. the appropriate moments of 
In equations (11)-(14) we assume that the forces F, are longitudinal for all v5 and 

We have thus kept both the initial value terms and the fictitious forces Fu in (1 1)-( 14). 
When using the fluctuation dissipation theorem we neglect the former but retain the 
latter and conversely, when using the transition probability function approach, we 
keep the former but neglect the latter. 

Neglecting the initial 
value terms in (11)-(14), one therefore easily shows that 

A; = w x k  (16) 

The total electric charge is always conserved, uptot = k * 

and hence also 
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On the other hand we do not generally have the relation A,,,, = W X , ~ , ~ ~  which is only 
valid if there are no chemical reactions. Equations (16) and (17) are important when 
showing that the velocity fluctuation spectrum is the same, whether calculated by 
means of either the fluctuation dissipation theorem or the transition probability 
function approach. 

3. The fluctuation dissipation theorem 

Before stating the fluctuation dissipation theorem, we establish a notational conven- 
tion. Let the matrix A, with the elements AuP at the position ap, be given. We then 
denote the transpose to A, i.e. the matrix which has the elements Apa at the position 
ap, by Ar, and we denote by A' the transpose conjugate to A, i.e. the matrix which 
has the elements A& at the position ap. The indices a and p are not necessarily 
related to the particle species cr. 

We shall use the following version of the fluctuation dissipation theorem. Consider 
a system in thermal equilibrium, with the temperature T (in energy units). Let Fa be 
a set of small external perturbations acting on the system and let Vu be a set of linear 
responses to these perturbations, such..that the work done on the system by the 
perturbations Fa is U' = l d k  (~T)-~X: ,F ,V,* .  Let the symbols V and F denote the 
column vectors with the elements Vu and Fa at the position a. If we then define the 
response matrix A as the matrix which satisfies the relation V = A F, the theorem 
states that 

(18) 

where (VV'), has the element (VaVg ) k  at the position a@. 
For instance, if the set of perturbations Fa has only one element F = 4e,t, where 

dext is an external electrostatic potential, we have V = -iwp. It is now easy to determine 
the response function A ,  and we obtain ( 1  V12)k = ~ ~ ( 1 ~ 1 ~ ) ~  = 2 m o k 2 T  Im(E -') from 
equation (18). 

In order to calculate the velocity fluctuation spectrum, we choose F, = & - F, and 
hence V, = nCo& * uml; & is the unit vector in the direction of k. The response matrix 
A is then found from equation (13) and according to the fluctuation dissipation theorem 
we thus have 

( w'), = T ( A  + A+) 

where we have also used equation (16). 
We now demonstrate the effect of a direct application of the continuity equation 

(W -iK)N = k r  (20) 
where N and r are column vectors with the elements n V l  and nu& * u,1 at the position 
(+. The matrix K, with the constant IC,,' at the position a(+', accounts for the chemical 
reactions in the plasma. This is equivalent to the simple model C,,fcp = -Ku,$uo do' cp. 
If we wish to use the fluctuation dissipation theorem to calculate the density fluctuation 
spectrum instead of the velocity fluctuation spectrum, we replace the set of responses 
r with N and we introduce new external perturbations @, such that the work integrals 
l d k ( 2 ~ ) - ~ F ' V  and l d k ( 2 ~ ) - ~ @ ' N  are equal. This is achieved by setting @ =  
k-' (W - iK)'F. The response matrix appropriate for the calculation of using 
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equation (18), then becomes 

a = k2(w  - iK)-'A[(w - iK)-']' (21) 

where A is the matrix used in the calculation of the velocity spectrum (19). This result 
can also be derived by means of a direct substitution of equation (20) in the velocity 
spectrum. 

However, the particle non-conserving collisions are a damping mechanism, just as 
any other collision process is. Hence the matrix (w -iK)-' has poles in the upper 
w-half plane. As ,a consequence [ (w - iK)-']+ has poles in the lower w-half plane. The 
response matrix A in equation (21) thus has poles in both the upper and the lower 
w-half planes. This response matrix is accordingly non-causal and hence 
unphysical. 

The reason why this occurs is, of course, that the continuity equation (20) only 
describes the average evolution of the system for times t >O.  In order to describe 
the plasma before t = 0, at which time a complete knowledge about the system was 
assumed, we require another equation. Thus the continuity equation cannot be Fourier 
transformed directly and it must accordingly be applied very carefully. We return to 
this point in § 5 .  The results of the method leading to equation (21) will be further 
discussed in § 7. 

If there are no particle non-conserving collisions, the operator (w - iK)-' reduces 
to the scalar w -' which has no poles in the lower w-half plane. In this case no problems 
associated with non-causal response operators therefore appear. 

4. The ttansition probability 

A straightforward extension 
velocity fluctuation spectra 

method 

of Uddholm (1982) yields the undressed density and 

, 

and 

where the integrals du ( )g , ,J  * ) are the Fourier-Laplace transforms of the 
forward-time correlation functions, e.g. S:,,,, (k, w )  where S:fTs, (k ,  t )  = (nurl(t)n ( 0 ) ) k  
if t > O  and S:,,,,(k, t )  = 0 if t CO. Due to time and space reversibility we have 
s,',,,, (k, t )  = s:..,, (k ,  t ) ,  or equivalently, 

W * O  dv gu, ,4fff , ,o? = n m . 0  do g,,,,,(fuso), (24) I I 
a relation which we shall find useful later. 

The collective effects are then included by assuming that the relations (11)-(14) 
are also valid for the exact microscopic distribution functions, and not only for the 
averagesf,, and fb':. In particular, we obtain the electron velocity fluctuation spectrum 
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by multiplying equation (13) with its complex conjugate and taking the averages. The 
fictitious forces F, are neglected, in accordance with 0 2. We refer to this calculation 
as the dielectric superposition principle, and it has been discussed by several authors, 
e.g. Ichimaru (1973) and Rosenbluth and Rostoker (1962). It is also possible to 
establish a linear relation between the external forces F, and the random variables 
nc: or u t : ,  such that both terms on the RHS of equations (11)-(14) become identical. 
The random quantities can accordingly be directly interpreted in terms of the fictitious 
forces (and oice uersa). This version of the superposition principle has often been 
used to extend the fluctuation dissipation theorem to many-temperature plasmas. 

It is thus standard to use the superposition principle and since it would be quite 
outside the scope of this paper to prove it, we shall accept it without further justification. 

Let us now assume Maxwellian velocity distribution functions. If we consider at 
first only the random spectra (i.e. neglect the term E - ' A ~ , A ;  in equation (19)) it is 
easy to see that equations (19) and (23) are equivalent. The collective effects can 
then be included by means of the superposition principle above. In the collective 
case, the verification of the equivalence between equations (19) and (25) is a straightfor- 
ward but lengthy calculation. The details must therefore be omitted, but we mention 
that the key step is to notice the identity 

and to calculate the factors before A,,,, Aut,uf, A,-, and Aut,,-,. where U'' # cr and (T"' # a'. 
Thus, the two methods yield the same velocity spectra. 

We have formulated the theory in terms of the Boltzmann equation operators 
g,!,,,,. It is also possible to use the Green functions (or the transition probability 
functions) W,.,., (k, v l o ' )  of the operators g,.,., (Hagfors and Brockelman 1971). For 
instance, equation (22) then assumes the form 

J 

+ n , ~  do do' W,$,s(k, ~ l ~ ' ) f , , o ( ~ ' ) .  (27) i 
The functions WuSu,, have a simple physical interpretation. Let a particle of species 
a" be given at the origin r = 0 with the velocity U' at the time r = 0. Due to the 
chemical reactions (or the collisions with the other species) this particle will also give 
contributions to the distribution functions for the other particle species. With the 
collective fields neglected, Wu,uff(r, U, tlu') is then the average contribution to the 
a'- particle distribution function from this particle. 

In this work we use the g,,,,, operator formalism, because it is more suitable for 
algebraic operations. We might, of course, just as well have used the physically more 
appealing formalism in equation (27). However, in that case it would have been 
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necessary to derive an adjoint Boltzmann equation: in the initial coordinates for the 
functions Wu,u,f and to use this equation repeatedly. 

We close this section by noticing that according to equation (27) 

or in other words, if the collective fields are negligible, the total scattered intensity is 
not affected by the presence of chemical reactions in the plasma. 

5. Density fluctuations 

Let us consider the density autocorrelation function matrix (N(r ,  t )NT(r’  t ’ ) ) ,  which 
only depends on /r  -r’l and It -r‘l, We have seen (9  3) that we obtain a non-physical 
result if we assume that the continuity equation (20) can be applied to both N ( r ,  t )  
and N(r’ ,  t ’ )  in (N(r ,  t)NT(r’,  t ’ ) ) ,  i.e. 

(a la r  +K)(N(r ,  t )NT(r’ ,  t ’))(a/at’+ KT) = (D(r ,  t )DT(r’ ,  t ’ ) )  (29) 

where D(r, t )  is the column vector with the element 

Du(r, t )  = a/ar ru(r, r )  = nOod/ar . uul(r,  t )  

at the position U, and in order to make our expressions more concise, we let the 
operator (d/dt’+KT) operate on its left. Equation (29) is also in disagreement with 
our formulae (22) and (23). This is an example of the fact that the average properties 
of the fluctuating quantities, such as equation (20), derived from the Boltzmann 
equation, cannot be transferred to the correlation functions in a straightforward 
manner ( Q  2). If the matrix K vanishes, the continuity equation (20) is exact and 
equation (29) then applies. However, if the matrix K is finite, equation (20) only 
describes the average evolution of the system for times t > O ,  and equation (29) 
accordingly does not apply. 

The purpose of this section is thus to modify equation (29) in such a way that the 
chemical reactions (i.e. the matrix K) are included in a correct manner. When the 
collective effects are negligible, the resulting equation is a relation between the random 
density and velocity autocorrelation functions. We shall show that this relation agrees 
with the transition probability theory, i.e. with equations (22) and (23). 

It is not difficult to derive the appropriate version of equation (29). To this end 
we define the forward-time correlation function S’, 

(30) 
which vanishes for t’> t (the Heaviside unit step function H ( T )  vanishes for T < 0 and 
equals unity for T > 0) .  There is of course also a backward-time correlation function 
S-, which vanishes for t’ < t ,  such that S’ + S- = (ANT). These functions have similar 
properties, so we need only consider SA, however. In the presence of chemical 
reactions in the plasma, it is necessary to consider the function(s) S’ (and S-) instead 
of (NIT). The reason for this is that then the discontinuities at t = t’ give rise to terms 
which do not cancel out in the density fluctuation spectrum, when we add the forward- 
and backward-time correlation functions s’ and s-. The random spectrum (see 

S+(r,  f ir’ ,  t’) = H ( t  - t ’ ) (N(r ,  t)NT(r’, t’)) 

+ cf Uddholm, British Libraries Supplementary Publication Scheme, PS ref no 90057 (appendix) 
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equation (38)) does, in fact, consist of two parts: one which contains chemical effects 
in addition to all the thermal effects, and another which corresponds to chemical 
fluctuations in a plasma without any thermal effects, The former vanishes in the limit 
of a 'cold' plasma, i.e. when diffusion effects are so weak that the plasma particles 
are virtually stationary on the timescale of the chemical reactions. We shall, somewhat 
improperly, use the notations 'thermal' and 'chemical' parts. It is the 'chemical' part 
that originates from the discontinuities at t = t ' .  

We now derive the relation between the velocity and density correlation functions, 
which replaces equation (29). To this end we let t be constant and vary t '  < t. If we 
increase t' by a small amount dt', the correlation function (D(r, t )NT(r' ,  t ' ) )  will change 
by the infinitesimal quantities (DNT)KT dt' and (DoT) dt, which are due to the chemical 
reactions and the particle fluxes, respectively. Hence, bearing in mind that an increase 
of t' must increase our knowledge about the system since It - t ' /  decreases, we obtain 

(31) 

if t' < t and where the operator (a/& - K') operates on its left. On the other hand, 
if we keep t' fixed and vary t > t ' ,  we derive 

(D(r,  t )NT(r ' ,  t ' ) ) ( d / d t ' -  KT) = (D(r,  t )DT(r ' ,  r ' ) )  

( a / a t  +K)S'(r, fir', r ' )  = (D(r, t)NT(r', t ' ) )  (32) 

if t > t ' .  Including the contributions from the discontinuity at t = t ' ,  equations (31) 
and (32) yield 

[ (a/% +K)S+(r, fir', t ' ) - a ( t  -f')(N(r, t)NT(r', t'))](d/dt'-K') 

= ~ ( t  - t ' ) ( D ( r ,  t)DT(r ' ,  t ' ) )  - s ( t  - t')(D(r, t)NT(r ' ,  t ' ) )  (33) 
where we have used the fact that the delta function S ( T )  is the derivative of the unit 
step function H ( T ) .  Equation (33) is the appropriate formula to use instead of equation 
(29). Taking the Fourier transforms of equation (33), we obtain 

( w  - iK)S ' (k)(w - iKT) 

= d7 e-'"'(D(t'+T)D'(t'))k -i(N(t = f')Ni(f'))k(w -iKT) 

where 

( 2 ~ ) ~ S ( k  - k ' ) S ' ( k )  = dr dr dr'dt'exp[-i(wt - w ' t ' - k  * r +k' * r')]S+(r, f i r ' ,  t ' ) .  

(35) 

(36) 

I 
For uncorrelated particles we have the formulae 

( n g i  ( f  = t')n:!F ( t ' ) ) k  = nrosuT0, 

(k ' U : ;  ( t  = t')n"'l ( f ' ) ) k  = 0. 

where S,,, is the Kronecker delta and 

(37) 
When inserted in equation (34) these formulae yield the random density, forward-time 
correlation function 

-;c 

S+(r l (k )  = k 2 ( w  -iK)-'  d r  e ~ ' " ' ( ~ " ' ( t ' + r ) ~ ' ' ' + ( f ' ) ) ~ ( w  -iKT)-' -iM (38) 
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where we have used that D,=-ikr, and have introduced the matrix M with the 
element n,,o(w - iK) iJ ,  at the position (T(T’. The first term on the RHS in equation (38) 
corresponds to the ‘thermal part’ of the spectrum and the second term, which arises 
due to the discontinuities at t = t’, corresponds to the ‘chemical part’. We obtain the 
spectrum (A”’), = 2 Re S’(k) by taking the real parts in equation (38). 

Let us now consider the transition probability function method. The results (36) 
and (37). are immediate consequences of this theory, cf equation (28). Moreover, 
according to the definition of the operators g,,,, equation (3),  we have 

where the constants KmUt are the elements in the matrix K. This relation is equivalent 
to 

where [h,,] is short for the matrix which has the element huu, at the position vu’. 
In an analogous way we also find 

When we substitute equation (41) in the RHS of equation (40), equation (38) follows 
upon multiplication with the diagonal matrix [SuU,nuo], if we use (w - iK)-’[S,,,n,~l= 
[SOu~nuO](~O -iKT)-’ which is due to the condition for balance between the loss and 
production of particles Kuu’nufo = K,,A,~. This also follows if we apply equation (24) 
to the ‘chemical part’ of the spectrum or from arguments similar to those in the 
appendix. 

If the chemical reactions are sufficiently frequent, the ‘thermal part’ in equation 
(38) is sinal1 and the ‘chemical part’ dominates. However, it’ the chemical reaction 
rate is low the ’chemical part’ -iM does not vanish. Nevertheless, if there are no 
chemica! reactions, there can be no  chemical terms in the spectrum in spite of this. 
We can understand this by expressing the integrals J du k * ug,,,(k * ufufo) as a linear 
combination of the integrals J du g,,,(f,to) by means of equations (40) and (41). It is 
then seen thkt the ‘thermal part’ of equation (38) can be expressed as 

When this is substituted in equation (38), the second term on the RHS and the ‘chemical 
part’ cancel, and equation (38) reduces to equation (22). The ‘thermal part’ in (38) 
thus also involves a chemical term. The notations ‘thermal and chemical part’ are 
therefore not quite adequate. However, Im M is equal to the chemical part of Kockarts 
and Wisemherg (1981) and the ‘thermal part’ contains all the thermal effects and it 
is small when these effects are weak. 

The failure of equation (29) can also be demonstrated in a much more elementary 
manner. Since the quantities (N(r ,  t )NT(r‘ ,  t ’ ) )  and (D(r ,  t )DT(r‘ .  t ’ ) )  only depend on 
)r  - r’j and It - t’ l ,  they must remain invariant under the change of variables (r, t )  2 
( r ’ ,  t’: and we must also have d / d t  = - a l a r ’  on the LHS. These facts lead to a contradic- 
tior., because equation (29) then assumes a form where the operators on its LHS are 
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replaced with (a lar  -K)  and (a/at'-KT). If we consider equation (33), on the other 
hand, the change of variables (r,  t ) $ ( r ' ,  t ' )  and transposition (or use of a/ar = -a/&') 
yields the equation corresponding to (33) for S ( r ,  tjr', t ' ) ,  as we should expect. 

We have thus found the correct relation between the random density and velocity 
correlation functions, equation (38). We have also seen that this relation is a simple 
consequence of the transition probability function approach. The transition probability 
approach is in fact more general than equation (38). Whereas the latter is restricted 
to the model for the particle non-conserving coilisions introduced in 8 3,  the former 
is valid for arbitrary collision terms Cu3u#t. As a matter of fact, for general particle 
non-conserving collision operators C,,,, , it is not possible to derive continuity equations 
corresponding to equation (20) or (38). 

Although equation (34) is much simplified when we consider the random spectra, 
it is highly impractical to use, if we wish to consider the dressed spectra. The collective 
fields are easily included, however, by means of the superposition principle, as discussed 
previously. Omitting the extensive algebra, we thus derive the dressed electron density 
fluctuation spectrum 

where equation (24) has been used in the second term on the RHS. This expression 
is valid both for plasmas in which the fluctuations in the various species are coupled 
through particle conserving collisions, and for plasmas where this coupling is due to 
particle non-conserving collisions. All non-standard symbols appearing in equation 
(42) have been defined in 8 2. 

6. The total scattered intensity 

Let us consider a Maxwellian, isothermal plasma, i.e. a plasma in which all the particle 
species have the same temperature, and show that the total intensity in the electron 
density fluctuation spectrum is not changed in the presence of particle non-conserving 
collisions. Since we assume Maxwellian velocity distribution functions 

fuo(v )  = j2?TuTu)-3/2 e ~ p ( - v ~ / 2 u % ~ )  (43) 
we can rewrite equation (4) as 

where we have used that all species have the same temperature T = m , ~ $ ~  together 
with equations (2), (43) and the relation 
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The formula (45) is not obvious, and a heuristic derivation is therefore presented in 
the appendix. Although we do not prove it rigorously, for general collision operators 
C,,,, the arguments in the appendix are quite sufficient for showing that this relation 
is true for any collision operators which can be written in the Boltzmann form, e.g. 
the collision model introduced in Q 3.  The Boltzmann form is suitable for the collisions 
with the neutrals and the particle non-conserving collisions. For small-angle Coulomb 
collisions, the collision operators assume a different mathematical form, however, so 
the simple model in the appendix does not quite apply. Nevertheless, this is probably 
only a mathematical detail of very restricted physical interest. 

Combining equation (45) with equations ( 6 )  and (3), it is now easy to show that 

where wpu is the plasma frequency for species cr, 
formula together with the relation F = 1 + Z U x b  and equation (24) we derive 

= n u o q ~ / ( m ~ o ) .  If we use this 

where the straightforward algebra has been omitted. We notice that equations (42) 
and (47) are quite similar, apart from the factor in front of the second term on the 
RHS. Combining these two equations we will, in fact, find that 

In the case of no collisional coupling between the various particle species, we see that 
this formula reduces to the familiar version of the fluctuation dissipation theorem. 

We are not interested in equation (48) for its resemblance to the fluctuation 
dissipation theorem, but because it is quite easy to calculate the frequency integral 
of the RHS of this equation. The first term is integrated as in Dougherty and Farley 
(1963) and it is then seen that the result only depends on X ; ( W  = 0) and F ( W  = 0). 
which are easily calculated from equation (46). The second term does not contribute. 
This is clear if we rewrite it in terms of the transition probability functions W,, and 
use the same arguments as in the end of § 4. We thus find 

This equation generalises (28) (valid for wpe/kuTe = 0) to the collective case wpe/kvTe f 0, 
for isothermal plasmas. Both (28) and (49) are identical to the corre- 
sponding results in the absence of chemical fluctuations (Fukuyama and Kofman 
1980). The total intensity in the electron density fluctuation spectrum is accordingly 
not changed in the presence of chemical reactions, if the plasma is isothermal, and 
the same result probably also holds for general collision processes. 
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Our formula (49) for the total intensity requires microscopic reversibility (see 
appendix). As pointed out by Professor Kockarts this need not be true for, e.g., 
photo-ionisation. However, in a fluid theory the chemical reactions are only introduced 
through the continuity equation (20), which does not include any information as to 
whether microscopic reversibility holds or not. Equation (20) can, in fact, be obtained 
by taking the velocity moments of the simple kinetic model in § 3, which satisfies the 
microscopic reversibility requirement. In order to investigate effects associated with 
the failure of this requirement, detailed kinetic theories must be employed. Moreover, 
in the presence of photo-ionisation the plasma is not likely to be in thermodynamic 
equilibrium, so the use of the fluctuation dissipation theorem is questionable and 
kinetic theories may have to be used also for this reason. 

7. Discussion 

We have formulated a theory for fluctuations in a plasma, where the fluctuations in 
the various particle species are coupled through the collision operators. The collisions 
may be particle conserving, particle non-conserving or both. We have concentrated 
our attention on the effects of particle non-conserving collisions, since in this case the 
theory becomes much more difficult. The need for such a theory has recently been 
pointed out by Kockarts and Wisemberg (1981), who considered the mesosphere at 
heights below 80 km. The main result in the present work is equation (42), which is 
valid independently of the collision processes. It can thus also be used in completely 
different situations, for instance to allow correctly for the collisional transfer of 
momentum (and energy) between the light ions and high-Z impurities in dense, 
low-temperature plasmas. This collisional effect has previously been neglected. 

Our approach is different from that of Kockarts and Wisemberg (1981). Their 
method is equivalent to first calculating the velocity fluctuation spectrum and then 
using the continuity equation, i.e. our equation (29), when calculating the density 
fluctuation spectrum. This method only works in the absence of chemical reactions, 
however. In the presence of chemical reactions, i t  is incompatible with the well known 
fact that (n,l(k, t)n;, ( k ,  t ‘ ) )  only depends on It --f’I. The reason for this is quite 
straightforward. In the presence of chemical reactions the dissipative part of the 
continuity equation would yield extra damping factors to both n,l(k, t )  and n t l  (k, f’). 
As we increase t and t‘, (n,l(k, t )n t l  (k, t‘)) thus tends to zero, even if we keep It - f ’ /  
constant. This is obviously in disagreement with the fact that the correlation function 
only depends on It - t’l. This situation occurs because the dissipative terms were not 
correctly included in equation (29). In order to treat the problem correctly we have 
to differentiate between the two cases t >t’ and t <t’.  If t > t ’  our knowledge about 
the system decreases when t increases, but increases when t’ increases. If t < t’, on 
the other hand, our knowledge about the system increases when t increases, but 
decreases when t‘  increases. As a result, the dissipative term K, in the factor with the 
derivative with respect to the smallest of t and t’, in equation (29) must change sign. 
This analysis is presented in some detail in D 5 .  If we use equation (29) directly, 
without changing the sign of K as we have just described, the factors (U -iK)-’ and 
[ (w  - iK)-’]’ will appear in the spectrum. As we have also seen before, the appearance 
of the non-causal response functions in § 3 is thus due to this erroneous use of the 
continuity equation. The theory of Kockarts and Wisemberg (1981) had therefore to 
be corrected. Their main result was that the electron density fluctuation spectrum 
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falls into two parts. To an excellent approximation, these are the (narrow) chemical 
part, discussed in our § 5 ,  and a (broad) part which is equal to the fluctuation spectrum 
in the absence of chemical reactions. Both parts may contain approximately the same 
power, so they also find that the total intensity may become doubled in the presence 
of chemical fluctuations. These calculations were performed assuming an isothermal 
plasma. We have seen, however, that the chemical reactions do not change the total 
power in the spectrum, if the plasma is isothermal and unless extremely complicated 
kinetic models are used. The effects of the chemical reactions are, in fact, very small 
for the short-wavelength fluctuations (k =40 m-'i considered by Kockarts and Wisem- 
berg (1981). 

As we increase the wavelength of the fluctuations, the effects of the chemical 
reactions increase due to collisional narrowing of the spectrum. Significant 
modifications will appear when the negative ion life time is comparable to or shorter 
than the period of a typical plasma oscillation. This can be expected for k s 5-10 m-', 
even in the isothermal case when the total power is not changed. The incoherent 
scatter technique may thus provide a possible means for direct measurements of the 
life times of mesospheric negative ions. 
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Appendix 

We wish to prove equation (45). To this end we consider some arbitrary chemical 
reaction C , A g  * C, B a ,  where the numbers A, and B, are non-negative integers. 
We shall derive a general expression on the Boltzmann form, for the contribution 
from this reaction to the linearised collision integral. This derivation is related to the 
discussion of the collisions in Hagfors and Brockelman (1971), since in both approaches 
the collisions are described by means of the particle 'scattering' probabilities (per unit 
time), We assume that the collisions are microscopically reversible, i.e. any reaction 
(with the initial and the final particle velocities given) going from the left to the right 
is (in equilibrium) exactly as probable as the same reaction going from the right to 
the left. This does, of course, not imply macroscopic reversibility. Equation (45) is 
then a very simple consequence of charge conservation 

as we shall see below. 
In order to find an expression for the collisional integral, let us first consider the 

unperturbed state, i.e. when the a-particle distribution functions are nUofvo. We then 
denote by 

the number of reactions, per unit time and volume, in which A,  particles of species 
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a ,  with velocities in {du2'}fzl about {u?'}fz~, react so that B, particles of species cr 
emerge from the reaction with velocities in {du:'}fzl:r1 about {U, }I="A,+I and where 
the index a goes over all the particle species involved in the reaction. The expression 

denotes thesequencea, , a ,  , . . . a ,  . Hence, theelementsin the sequences 
{U, and {ubf))f~~~:1 are the velocities of the a-particles immediately before and 
after the reaction. The quantity d P  thus contains all the information as to how the 
particles are 'scattered' in the reaction. Since we have assumed microscopic reversibil- 
ity, dP is also the number of reactions, per unit time and volume, going in the opposite 
direction. 

Now suppose that the distribution functions are slightly perturbed. Linearising, we 
then find the number of reactions going from the left to the right: 

dP(  1 +I U I = 1  1 { f u ~ ( ~ ~ ' ~ l [ ~ u ~ f u o ( t . . b i ' ) l } )  

(11 A +E, 

( 1 )  (2) ( N )  

( 1 )  A, 

A" 

and the number of reactions going from the right to the left: 

Having thus determined the number of reactions going in each direction, it is not 
difficult to construct the collision integral. This integral consists of four terms. When 
the reaction goes from the left to the right, a loss term arises due to the particles on 
the LHS (which are destroyed in the reaction), and a gain term arises due to the 
particles on the RHS (which are created in the reaction). If the reaction goes in the 
opposite direction, another loss term and another gain term arise for analogous reasons. 
The derivations of these four terms are quite similar. It is therefore sufficient to 
present the calculation of only one of them. We shall calculate the loss term, when 
the reaction goes from the left to the right. 

Consider the infinitesimal element du about U in velocity space. Due to the 
chemical reactions, the element do will experience a loss of particles of species a. 
The magnitude of this loss is 

per unit time and volume. The factor A, is included in front of the integral because 

for any I ,  1 G 1 SA, ,  and all these terms are equal. 

collision integral 

we must add the contributions from each of the terms where du = du;' and U = u u  ( I ,  

Calculating also the three remaining terms, we then find the linearised chemical 

where the straightforward algebra has been omitted. Equation (4.5) I ~ O W  follows 
directly from (Al )  if we put f v l  = 9on,ofu~. 
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The calculation above only holds if the collisions can be viewed as discrete events. 
This is certainly true for chemical reactions. If A, = B, for all species cr, the chemical 
reaction reduces to a particle conserving collision process, and the theory thus applies 
for this case, too, provided the collisions are discrete, e.g., charged particle-neutral 
collisions. Coulomb collisions, on the other hand, cannot be considered as discrete 
and are often described by means of Fokker-Planck collision operators. However, it 
is not difficult to show that, if we generalise the collision operators of, e.g., Dougherty 
(1964) to account for cross species collisions, the quantities C,,,(f,,o) always vanish. 
We notice that this is also the case for the collision operators in equation (A3) if 
particle conservation is assumed. There is an obvious physical interpretation of this. 
The velocity distribution functions fuo represent an equilibrium state, and a small 
density perturbation ~ , ~ n , ~ ~ f , ~ ~  (a,, being a small number) does not change the velocity 
distribution functions. Hence, for particle conserving collisions C,u8(fu,o) = 0, and 
equation (45) follows. 

Equation (45) can probably also be proven for Coulomb collisions, by successively 
approximating the collision operators with expressions such as (A3). Such a procedure 
would be very lengthy and technical and is therefore not included in this report. 
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